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computed filter characteristics in Fig. 4 were obtained by assuming
that all the elements of the triplexer have the same unloaded Q value
as a stripline of 50 @ in a Rexclite 2200 circuit board. No final adjust-
ment of the dimensjons was required to obtain this response. The
resonator length reduction factor was 2.50 percent of a quarter of a
wavelength at 3.0 GHz, as was calculated by Lagerlsf [7]. The elec-
trical length of the corner was measured and found to be 9.62 percent
of a quarter wavelength at the same frequency. The alignment
of the center frequencies of the filters was of great importance. Care
had to be taken in the photoetch process to get a filter requiring no
final adjustment. Insertion loss at frequencies outside the crossover
region was very low due to the loose coupling of the bandstop filter
resonators.
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Implementation of Conservation-of-Energy Condition
in Small Aperture and Small Obstacle Theory

CHUNG-LI REN

Abstract—In a previous paper, Felsen and Kahn showed that the
scattering matrix of small apertures and obstacles in multimode
waveguide regions is conveniently calculated for general lossless
structures, but observed that the scattering matrix does not satisfy
the conservation-of-energy requirement. It is also to be noted that
the scattering parameters could become much larger than unity or
even infinite for frequencies near or at the cutoff of the coupled
modes. A method is presented in this correspondence to implement
the lossless condition so that the resultant scattering matrix satisfies
the conservation-of-energy requirement and, consequently, can be
represented as a lossless equivalent circuit for all frequencies. The
corresponding impedance, admittance, and transfer matrices for gen-
eral lossless symmetrical structures are given in compact form
directly in terms of the scattering parameters.

I. INTRODUCTION

The design of waveguide components requires the availability of
specific discontinuity structures with known transmission and re-
flection properties. A rigorous theoretical analysis of these wave-
guide discontinuities is very often quite involved and, in practice,
its solution usually becomes tractable only with the imposition of
judicious assumptions. One such assumption is that the apertures
and the obstacles are small and the solutions may be evaluated easily
in the lowest order of approximation, which is generally known as
the small aperture and small obstacle theory [1]. The application of
small aperture and small obstacle theory to discontinuities in multi-
mode waveguide regions becomes particularly attractive in view of
the fact that such design information is generally unavailable in the
literature, whether in the form of theoretical calculation or measure-
ments. The design of millimeter wave waveguide components, such
as filters and couplers involving multimode propagation, is such an
example.

However, the scattering matrix of a lossless waveguide discon-
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Fig. 1.

tinuity calculated from small aperture and small obstacle theory is
not unitary and, hence, in violation of the conservation of energy
[1]. Thus the impedance or admittance matrices, when converted
from the scattering matrix, always contain real parts. In addition,
the scattering parameters become very large or even infinite for fre-
quencies at which certain modes are near or at cutoff. Therefore,
meaningful equivalent circuits cannct be derived from these scatter-
ing matrices. In this correspondence, a technique is proposed to
implement the conservation-of-energy condition so that the modified
scattering matrices satisfy this condition. The corresponding im-
pedance, admittance, and transfer matrices are derived in compact
form directly in terms of the scattering parameters.

II. SMALL APERTURE AND SMALL OBSTACLE SCATTERING
ForMuLaTION OF LossLEss SyMMETRICAL DISCON-
TINUITIES IN MULTIMODE WAVEGUIDES

Consider the configuration in Fig. 1 where either a perfectly con-
ducting obstacle or an aperture is located in a waveguide or between
several waveguides propagating N modes. For convenience in the
derivation of the theory, the structures of Fig. 1 are assumed to be
symmetric in the sense that there exists a transverse plane of bisec-
tion at 2=0. Such structures are the most frequently encountered
discontinuities in the waveguide component designs.

The small aperture and small obstacle formulation for the scat-
tering coefficients of the structures in Fig. 1 is given in equations
(10) and (33) of [1], which may be generalized and written in a
matrix form shown in (2).
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where I is the NXN identity matrix. 4; and A4, are imaginary
N XN submatrices, which are functions of the polarizabilities of the
discontinuity and the electromagnetic fields of the modes that are
coupled by the discontinuity. In the general case, both 4, and 4.
are nonzero. However, either 4; or 4, is a zero matrix for structures
that are either pure shunt or pure series, respectively. For example,
when all modes are coupled only through their longitudinal magnetic
field components and (or) their transverse electric field components,
A, is nonzero, 42 =0, and the structure is pure shunt. In the dual case
when only the longitudinal electric field and (or) the transverse
magnetic fields are coupled, 4, is nonzero and 4, =0. The structure
becomes pure series. It is to be noted that the scattering matrix in
(2) is not unitary and does not satisfy the conservation-of-energy
requirement [1]. In the submatrices 4; and A, certain elements may
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become very large as frequencies move closer to the cutoff of certain
modes.

111. IMPLEMENTATION OF CONSERVATION-OF-ENERGY CONDITION
viA Z AND ¥ MATRICES IN TERMS OF SMALL APERTURE AND
SMALL OBSTACLE SCATTERING PARAMETERS

It is shown [2] that the scattering matrix of (2) may be bisected
into two parts as in (3). Se represents the response of symmetrical
excitation and S° the antisymmetrical excitation.

§ =38+ 5° 3
where
e 1 s | isea
So=-{ ——|——— ) . 4a,
2 dse 1 s® 2NXEN (4a)

The NX N even and odd submatrices s¢ and s° can be written in terms
of 4, and 4, directly from (2) [2]:

Se=I+2A1 S°='—I+2A2.

The corresponding impedance and admittance matrices are related
to (4) by [2]

1 Ze_l..zolze__zo 1 e_|_ 0| ye — g0
Z== (___,vﬁ__> y== (ﬁ_ﬁ,*L#i) (s)
2 \28 — 22 1z° + 2°/ anyeon 2 \y? =y 1y + v/ amraw

(4b)

2= (y)1 = (I 4+ s9)(I — s0)L, (6)

Substituting (4b) into (6),
=+ 4)(—4)™ 0]
30 = As(J — A)7\ ®

As we can see from (7) and (8), z° and 2° are not purely imaginary,
but contain real parts. Since the discontinuities are assumed small,
the magnitude of the elements of A; and A4, is much smaller than
unity; therefore, only the lowest order of approximation should be
retained in (7) and (8), viz.:

20~ ___Al—l

20~ A,

Yoo — 4,y (O]
Yo A (10)

If these expressions are used, Z and Y of (5) are purely imaginary
and completely define the lossless 2 N-port equivalent circuit of Fig. 1.

Therefore, the imaginary submatrices 4; and A of the scattering
matrix from small aperture and small obstacle theory are substituted
directly into (9) and (10) to obtain the equivalent circuit that fulfills
the conservation-of-energy requirements retaining only the first
order terms of 4, and 4.

IV. MODIFIED SCATTERING MATRIX FOR SMALL
APERTURE AND SMALL OBSTACLE THEORY

The scattering matrix can now be reconstructed in modified
form using (6), (9), and (10). Thus we obtain

o= (I — AT+ Ay)
§o = (Ay-+ DY (4s — I).

1y
(12)
§¢and §° satisfy §e§o* =T and §o5°* = I, which are part of the conserva-
tion-of-energy condition [2].

The total scattering matrix with the lossless condition imple-
mented can be obtained by substituting (11) and (12) into (3) and
(4):

S=54+5°

_ E I —A) (I +4) (T — Ay + 4y
2\T -4y T+ A4) 1T — A0 T + 4y
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From the comparison of (13) and (4) it becomes clear that the imple-
mentation of the lossless condition has added the higher order terms
§o— 0= — 2(—T 4+ A)idy

§o— 0= —2(] -+ Ap)14s?
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Fig. 2.

Fig. 3.

to the scattering matrix of (4). As a result, the modified scattering
matrix in (13) can be represented by a lossless equivalent circuit for
all values of 4; and 4, since S of (13) is always unitary, even as 4.
and A» become very large or infinite when certain modes are near or
at the cutoff.

V. Pure SHUNT AND PURE SERIES APPLICATION

For practical applications, pure shunt and pure series cases are
of special interest. A typical example of the pure shunt application is
the directional coupler in which an array of small apertures is aligned
in the longitudinal direction on the common waveguide wall and
only the longitudinal magnetic field components are coupled through
these apertures, 4;=0. The scattering matrix is therefore

S = ((I — A4 I - Al)‘l)
I — 4™ (I — A)14 7 ‘
The equivalent circuit of (14) can be derived from the corresponding

partial even admittance and odd impedance matrices of (9) and
(10), respectively; y¢= —A;and 22 =0.

_ =14 Arl)

19

Z=—("— = (13)

2 Aty At
The resultant equivalent circuit is shown in Fig. 2.

It must be emphasized that A; can be singular and the equivalent
circuit of (15) can still exist because it is determined by the N-port
partial network y¢=—4; (see Fig. 2). In the coupler design, either
the transfer scattering matrix T or the transfer matrix of standing
wave parameters [ABCD ] for each individual aperture may be used
to obtain the total cascade equivalent circuit:

- (li’fl_{_fL_) 16)
-4y | I— 4

and

an

These are derived directly in terms of 4, and fulfill the conservation-
of-energy condition.

The dual case is a pure series structure where, for example, only
transverse magnetic field components are coupled through the
apertures and 4, =0. The scattering matrix is

- (e 4+ D)4, | (A2+I£1_
(A:+ D (A + D04,

(18)

>

The equivalent circuit of (17) can be derived from the corresponding
partial even admittance and odd impedance matrices of (9) and (10),
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respectively; y°=0 and 2z°=4,. The equivalent circuit is shown in
Fig. 3:

19

The equivalent circuit of (19) exists even if A: is singular. The
transfer scattering matrix and [4 B € D] matrix are

(20)
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and
I | 24,
ABCD|={—— " 21
[ | 17 (21)
respectively.
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Computer Program Descriptions

Permeability Tensor of Magnetized Ferrites from
Waveguide Measurements

PURPOSE: By means of this program the complex eigenvalues
of the permeability tensor of magnetized ferrites
can be calculated from measurements of the propa-
gation constants of right- and left-handed rotating
HE; waves in circular cylindrical waveguides con-
taining axial longitudinally magnetized ferrite rods.
Fortran IV; source program deck length 342 cards.
H. Entschladen, Institut fiir Hoch- und Hochst-
frequenztechnik der Ruhr-Universitit Bochum,
4630 Bochum, Germany.
AVAILABILITY: ASIS-NAPS Document No. NAPS-01818.
DESCRIPTION : The structure of a circular cylindrical waveguide
containing an axial longitudinally magnetized fer-

rite rod allows the measurement of the microwave material param-
eters of ferrites, i.e., the permeability tensor, by using fairly large
ferrite specimens [1], as opposed to very small specimens such as
spheres used in conventional perturbation technique measurements,
The propagation constants yi=eay+jBys of right- and left-handed
rotating HE;; waves in the ferrite-loaded waveguide are measured as
function of a longitudinally applied static magnetic field. From these
measurements the complex eigenvalues u. =pu.'—ju.’’ of the permea-
bility tensor of the ferrite can be evaluated. The relation between the
propagation constants of the waves and the dimensions of the wave-
guide structure, the permeability tensor of the ferrite rod, and the
material parameters of the surrounding medium (in this special case
the surrounding medium was air with the assumed vacuum dielectric
constant ) is given by the characteristic equations of the problem
[2]. Consequently the calculation of the four material parameters
ps', py'’ requires the solution of these characteristic equations forming
a system of four transcendental equations. The structure of the com-
puter program of this problem is shown in the simplified flow chart
of Fig. 1. The source program consists of five parts—the main pro-
gram and four subprograms. The main program includes the coMmoN
statement for common storage arrays, the READ and WRITE state-
ments for the data input and output, and the cALL and EXTERNAL
statements for the subprograms. In the subprograms FUNCTION
CFMUEP and ronctioN CFM UEM the characteristic equations for
the right- and left-handed rotating Hy; waves are programmed. The
subprogram SUBROUTINE NEWTON is used to solve the system of the
four transcendental equations by applying Newton's method [3]. By
means of the subprogram SUBROUTINE COMBES, the Bessel functions
of first and second kind with order 0 and 1 of complex argument oc-
curring in the characteristic equations are calculated.

The computer run starts with reading in a data card with the
actual values of the following parameters:

LANGUAGE:
AUTHOR:
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Fig. 1. Simplified flow chart of the computer program.
F measuring frequency;
DO inner diameter of the cylindrical waveguide;
DM diameter of the ferrite rod;
CEP complex permittivity of the ferrite;
P, B 6 sign word to mark the specimen.

A further READ statement reads in a second data card with the follow-
ing input variables:

H intensity of the static magnetic field;

DALP  difference between the attenuation constants of the
right-handed rotating HE;; wave in the ferrite-loaded
waveguide and of the Hy; wave in the empty waveguide;

DBGP difference between the phase constants of the right-
handed rotating HEy; wave in the ferrite-loaded wave-
guide and of the Hy, wave in the empty waveguide;

DALMl corresponding to DALP and DBGP with left-handed

DGBM]/ rotating HEy and Hy; waves.

With the caLL statement for the subprogram NEWTON the complex
eigenvalues wy, u— (MUEP, MUEM) of the permeability tensor are
calculated. The subprograms CFMUEP and CFMUEM containing
the complex characteristic equations—inserted at the same time with
EXTERNAL statements—call the subprogram comgEs for the calcula-



