
488 IEEE TRANSACTIONS ON MICROWAVE TEEORYAND TECHNIQUES, JULY 1972

computed filter characteristics in Fig. 4 were obtained by assuming

that all theeIements of thetriplexer have thesame unloaded Qvalue

as astriplineof 50 Qina Rexolite 2200 circuit board. No final adjust-

ment of the dimensions was required to obtain this response. The

resonator length reduction factor was 2.50 percent of a quarter of a

wavelength at3. O GHz, as was calculated by Lagerlof [7]. The elec-

trical length of the corner was measured and found to be 9.62 percent

of a quarter wavelength at the same frequency. The alignment

of the center frequencies of the filters was of great importance. Care

had to betaken inthephotoetch process togetafilter requiring no

final adjustment. Insertion loss at frequencies outside the crossover

region was very low due to the loose coupling of the bandstop filter

resonators.
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Implementation of Conservation-of-Energy Condition

in Small Aperture and Small Obstacle Theory

CHUNG-LI REN

Afrsfracf-In a previous paper, Felsen and Kahn showed that the

scattering matrix of small apertures and obstacles in multimode

waveguide regions is conveniently calculated for general lossless

structures, but observed that the scattering matrix does not satisfy

the conservation-of-energy requirement. It is also to be noted that

the scattering parameters could become much larger than unity or

even infinite for frequencies near or at the cutoff of the coupled

modes. A method is presented in this correspondence to implement

the lossless condition so that the resultant scattering matrix satisfies

the conservation-of-energy requirement and, consequently, can be

represented as a Iossless equivalent circuit for all frequencies. The

corresponding impedance, admittance, and transfer matrices for gen-

eral lossless symmetrical structures are given in compact form

directly in terms of the scattering parameters.

I. INTRODUCTION

The design of waveguide components requires the availability of

specific discontinuity structures with known transmission and re-

flection properties. A rigorous theoretical analysis of these wave-

guide discontinuities is very often quite involved and, in practice,

its solution usually becomes tractable only with the imposition of

judicious assumptions. One such assumption is that the apertures

and the obstacles are small and the solutions may be evaluated easily

in the lowest order of approximation, which is generally known as

the small aperture and small obstacle theory [1]. The application of

small aperture and small obstacle theory to discontinuities in multi-

mode waveguide regions becomes particularly attractive in view of

the fact that such design information is generally unavailable in the

literature, whether in the form of theoretical calculation or measure-

ments. The design of millimeter wave waveguide components, such

as filters and couplers involving multimode propagation, is such an

examde.

However, the scattering matrix of a lossless waveguide discon-
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tinuity calculated from small aperture and small obstacle theory is

not unitary and, hence, in violation of the conservation of energy

[1]. Thus the impedance or admittance matrices, when converted

from the scattering matrix, always contain real parts. In addition,

the scattering parameters become very large or even infinite for fre-

quencies at which certain modes are near or at cutoff. Therefore,

meaningful equivalent circuits cannot be derived from these scatter-s.
ing matrices. In this correspondence, a technique is proposed to

implement the conservation-of-energy condition so that the modified

scattering matrices satisfy this condition. The corresponding im-

pedance, admittance, and transfer matrices are derived in compact

form directly in terms of the scattering parameters.

II. SMALL APERTURE AND SMALL OBSTACLE SCATTERING

FORMULATION OF LOSSLESS SYMMETRICAL DISCON-

TINUITIES IN MULTIMODE WAVEGUIDES

Consider the configuration in Fig. 1 where either a perfectly con-

ducting obstacle or an aperture is located in a waveguide or between

several waveguides propagating N modes. For convenience in the

derivation of the theory, the structures of Fig. 1 are assumed to be

symmetric in the sense that there exists a transverse plane of bisec-

tion at z= O. Such structures are the most frequently encountered

discontinuities in the waveguide component designs.

The small aperture and small obstacle formulation for the scat-

tering coefficients of the structures in Fig. 1 is given in equations

(10) and (33) of [1], which may be generalized and written in a

matrix form shown in (2).

b=Sa
a=(”%”) b=(”;:”)

(1)

( A,+ ’4, 11+ ’4,-A,
s = ———––– l–———––

I+ AI– A2 [ AI+A2 ) (2)
2Nx2N

where I is the NX N identity matrix. A I and A z are imaginary

NxN submatrices, which are functions of the polarizabilities of the

discontinuity and the electromagnetic fields of the modes that are

coupled by the discontinuity. In the general case, both Al and Aj

are nonzero. However, either AZ or AI is a zero matrix for structures

that are either pure shunt or pure series, respectively. For example,

when all modes are coupled only through their longitudinal magnetic

field components and (or) their transverse electric field components,

Al is nonzero, Az = O, and the structure is pure shunt. In the dual case

when only the longitudinal electric field and (or) the transverse

magnetic fields are coupled, As is nonzero and A ~= O. The structure

becomes pure series. It is to be noted that the scattering matrix in

(2) is not unitary and does not satisfy the conservation-of-energy

requirement [1 ]. In the sub matrices Al and A z, certain elements may
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become very large as frequencies move closer to the cutoff of certain

modes.

III. IMPLEMENTATION OF CONSERVATION-OF-ENERGY CONDITION

VIA ZAND YMATRICES IN TERMS OF SMALL APERTURE AND

SMALL OBSTACLE SCATTERING PARAMETERS

Itis shown [2]that thescattering matrix of (2) maybe bisected

into two parts as in (3). .!Y represents the response of symmetrical

excitation and S the antisymmetrical excitation.

.S=.s”+. s” (3)

where

e *

( )s:=;—+;=!—:—.— 2Nx2N
(4a)

The N X N even and odd submatrices se and s“ can be written in terms

of Al and A.zdirectly from (2) [2]:

$’=I+2AI SO= —I+2A2. (4b)

The corresponding impedance and admittance matrices are related

to (4) by [2]

1 ze+z~ls~—zo

(
z=- —––l–––

)

1 ye+yqy’-yo

2 ze — ZO I Ze + ZO ~,v~!N ( )
Y=- ———j———

2 ye — y“ lye+ y“ ZNXZN
(5)

z:=(y:)-l = (1+ s:)(z – +. (6)

Substituting (4b) into (6),

z’= (Z+ A1)(— A1)–l (7)

z“ = ‘42(1 — A2)–J. (8)

As we can see from (7) and (8), Z6 and zo are not purely imaginary,

but contain real parts. Since the discontinuities are assumed small,

the magnitude of the elements of A ~ anr3 A z is much smaller than

unity; therefore, only the lowest order of approximation should be

retained in (7) and (8), viz.:

If these expressions are used, Z and Y of (5) are purely imaginary

and completely define the lossless 2N-port equivalent circuit of Fig. 1.

Therefore, the imaginary sub matrices A, and A, of the scattering

matrix from small aperture and small obstacle theory are substituted

directly into (9) and (10) to obtain the equivalent circuit that fulfills

the conservation-of-energy requirements retaining only the first

order terms of Al and A2.

IV. MODIFIED SCATTERING MATRIX FOR SMALL

APERTURE AND SMALL OBSTACLE THEORY

The scattering matrix can now be reconstructed in modified

form using (6), (9), and (1 O). Thus we obtain

.?” = (1 – AJ-l(l + AJ (11)

f“ == (A, +D-’(A, -I). (12)

;’ and SOsatisfy &&* = 1 and fofo* =1, which are part of the conserva-

tion-of-energy condition [2].

The total scattering matrix with the lossless condition imple-

mented can be obtained by substituting (11) and (12) into (3) and

(4) :

S=s’+s”
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to the scattering matrix of (4). As a result, the modified scattering

matrix in (13) can be represented by a lossless equivalent circuit for

all values of Al and AZ since .S of (13) is always unitary, even as Al

and A z become very large or infinite when certain modes are near or

at the cutoff.

V. PURE SHUNT AND PURE SERIES APPLICATION

For practical applications, pure shunt and pure series cases are

of special interest. A typical example of the pure shunt application is

the directional coupler in which an array of small apertures is aligned

in the longitudinal direction on the common waveguide wall and

only the longitudinal magnetic field components are coupled through

these apertures, AZ= O.The scattering matrix is therefore

((1 – AI)-lA , I (1 – A J-’

)
5’ = —––—––- l–––——– . (14)

(1 – A,)-’ i (1– A,)-’AI

The equivalent circuit of (14) can be derived from the corresponding

partial even admittance and odd impedance matrices of (9) and

(1 O), respectively; y’ = –A, and Z“ = O.

.(
A ,–1 I A ~–1

)
z=+ –——)–——

/4–1 ] A-1
(15)

The resultant equivalent circuit is shown in Fig. 2.

It must be emphasized that Al can be singular and the equivalent

circuit of (15) can still exist because it is determined by the iV-port

partial network ye= – AI (see Fig. 2). In the coupler design, either

the transfer scattering matrix T or the transfer matrix’ of standing

wave parameters [AB CD ] for each individual aperture may be used

to obtain the total cascade equivalent circuit:

T=
(

l“+A, 1 Al
————l————

–A, 11–z41 )

and

)[A BCD]= (+;- .

(16)

(17)

1 (1– A,)-l(I+AJ I(I – A,)-’(I+ AJ

( )

These are derived directly in terms of .41 and fulfill the conservation-
—

————————— l—————————
– ~ (1– AJ1(I+AJ I(1 – AJ-W+AJ of-energy condition.

(

(A, +I)-l(A, –1) 1–(A, + 1)-1(A2 - 1)
The dual case is a pure series structure where, for example, only

)
+ ~ –––––––––– I –––––––––– . (13) transverse magnetic field components are coupled through the

2 –(A2+1)-I(A, –1) I (A2+1)-1(A2 - 1) apertures and Al = O. The scattering matrix is

From the comparison of (13) and (4) it becomes clear that the imple-

(

(A, + l)-lA, I (A, + 1)-1

mentation of the lossless condition has added the higher order terms )
s = —––––– l–––––– ~~ (18)

(A, + 1)-1 i (A, + l)-lA,

P — se = — 2(—1 + AI)–IA12 The equivalent circuit of (17) can be derived from the corresponding
.;0 — so = — 2(1 + A2)–1A22 partial even admittance and odd impedance matrices of (9) and (10),
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respectively; y@=O and ZO=A2. The equivalent circuit is shown in and

Fig. 3:

(

AZ–I , –Aj–l

)

(
[ABC D]= –:– ~::–)

1’ = : ———— I———— .
–A2–1[ AZ–l

(19)

respectively.

(21)

The equivalent circuit of (19) exists even if AZ is singular. The

transfer scattering matrix and [A B C D ] matrix are
REFERENCES
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Descriptions

Permeability Tensor of Magnetized Ferrites from

Waveguide Measurements

PURPOSE : By means of this program the complex eigenvalues

of the permeability tensor of magnetized ferrites

can be calculated from measurements of the propa-

gation constants of right- and left-handed rotating

HEu waves in circular cylindrical waveguides con-

taining axial longitudinally magnetized ferrite rods.

LANGUAGE : Fortran IV; source program deck length 342 cards.

AUTHOR : H. Entschladen, Institut fiir Hoch- und Hochst-

frequenztechnik der Ruhr-Universitat Bochum,

4630 Bochum, Germany.

AVAILABILITY: ASIS-NAPS Document No. NAPS-01818.

DESCRIPTION: The structure of a circular cylindrical waveguide

containing an axial longitudinally magnetized fer-

rite rod allows the measurement of the microwave material param-

eters of ferrites, i.e., the permeability tensor, by using fairly large

ferrite specimens [1], as opposed to very small specimens such as

spheres used in conventional perturbation technique measurements.

The propagation constants y+= a++j~a+ of right- and left-handed

rotating HEII waves in the ferrite-loaded waveguide are measured as

function of a longitudinally applied static magnetic field. From these

measurements the complex eigenvalues ~+= p+’ —jP*” of the permea-

bility tensor of the ferrite can be evaluated. The relation between the

propagation constants of the waves and the dimensions of the wave-

guide structure, the’ permeability tensor of the ferrite rod, and the

material parameters of the surrounding medium (in this special case

the surrounding medium was air with the assumed vacuum dielectric

constant co) is given by the characteristic equations of the problem

[2]. Consequently the calculation of the four material parameters

w+’, P+” requires the solution of these characteristic equations forming
a system of four transcendental equations. The structure of the com-

puter program of this problem is shown in the simplified flow chart

of Fig. 1. The source program consists of five parts—the main pro-

gram and four subprograms. The main program includes the COMNION

statement for common storage arrays, the READ and WRITE state-

ments for the data input and output, and the CALL and EXTERNAL

statements for the subprograms. In the subprograms FUNCTION

CFMUEP and FUNCTION CFMUEM the characteristic equations for

the right- and left-handed rotating HII waves are programmed. The

subprogram SUBROUTINE NEWTON is used to solve the system of the

four transcendental equations by applying Newton’s method [3]. By

means of the subprogram SUBROUTINE COMBES, the Bessel functions

of first and second kind with order O and 1 of complex argument oc-

currin z in the characteristic eauations are calculated.

Th~ computer run starts ~ith reading in a data card with the

actual values of the following parameters:
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For program listing, order document NAPS.01818 from ASIS National Auxiliary

Publications Service, c/o CCM Information Corporation, 909 Third Avenue, New
York, N. Y. 10022: remittmg $2.oO per microfiche or $5.00 per photocopy.

9-Stact

{F, 06, DM,

WV-J

I/P
YES

F >10.6 ? Exit

NO

H, CIALC DBG~

DALM, DBGM

kd13—
C0t4pLEx

NO
FUNCTION

EX7ERNAL WMUEp
CFMUEP

SUBROUTINE
EXTERNAL CFMUEM—

NEWTON
CALL NEWTON

COMPLEX

i

FUNCTION

CFMUEM

H, AL8 SGi? 1

IWiihf, km I

t

Fig. 1. simplified flow chart of the computer program.

F measuring frequency;

DO inner diameter of the cylindrical waveguide;

DM diameter of the ferrite rod;

CEP complex permittivity of the ferrite;

P, B 6 sign word to mark the specimen.

A further READ statement reads in a second data card with the follow-

ing input variables:

H

DALP

DBGP

DALM\

DGBM/

intensity of the static magnetic field;

difference between the attenuation constants of the

right-handed rotating HEu wave in the ferrite-loaded

wave guide and of the HII wave in the empty wave guide;

difference between the phase constants of the right-

handed rotating HEII wave in the ferrite-loaded wave-

guide and of the HII wave in the empty wavegnide;

corresponding to DA LP and DB GP with left-handed

rotating HEII and HI1 waves.

With the CALL statement for the subprogram NEWTON the complex

eigenvalues ~+, V– (M lJEP, M UEM) of the permeability y tensor are

calculated. The subprograms CFM UEP and CFM UEM containing

the complex characteristic equations—inserted at the same time with

EXTERNAL statements—call the subprogram COMBES for the calcula-


